(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0)) → 0
log(s(s(x))) → s(log(s(quot(x, s(s(0))))))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(x, s(y)) →+ pred(minus(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
pred(s(x)) → x
minus(x, 0') → x
minus(x, s(y)) → pred(minus(x, y))
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0')) → 0'
log(s(s(x))) → s(log(s(quot(x, s(s(0'))))))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
pred(s(x)) → x
minus(x, 0') → x
minus(x, s(y)) → pred(minus(x, y))
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0')) → 0'
log(s(s(x))) → s(log(s(quot(x, s(s(0'))))))
Types:
pred :: s:0' → s:0'
s :: s:0' → s:0'
minus :: s:0' → s:0' → s:0'
0' :: s:0'
quot :: s:0' → s:0' → s:0'
log :: s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
quot,
logThey will be analysed ascendingly in the following order:
minus < quot
quot < log
(8) Obligation:
TRS:
Rules:
pred(
s(
x)) →
xminus(
x,
0') →
xminus(
x,
s(
y)) →
pred(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
s(
0')) →
0'log(
s(
s(
x))) →
s(
log(
s(
quot(
x,
s(
s(
0'))))))
Types:
pred :: s:0' → s:0'
s :: s:0' → s:0'
minus :: s:0' → s:0' → s:0'
0' :: s:0'
quot :: s:0' → s:0' → s:0'
log :: s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
minus, quot, log
They will be analysed ascendingly in the following order:
minus < quot
quot < log
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_s:0'2_0(
a),
gen_s:0'2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
minus(gen_s:0'2_0(a), gen_s:0'2_0(+(1, 0)))
Induction Step:
minus(gen_s:0'2_0(a), gen_s:0'2_0(+(1, +(n4_0, 1)))) →RΩ(1)
pred(minus(gen_s:0'2_0(a), gen_s:0'2_0(+(1, n4_0)))) →IH
pred(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
pred(
s(
x)) →
xminus(
x,
0') →
xminus(
x,
s(
y)) →
pred(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
s(
0')) →
0'log(
s(
s(
x))) →
s(
log(
s(
quot(
x,
s(
s(
0'))))))
Types:
pred :: s:0' → s:0'
s :: s:0' → s:0'
minus :: s:0' → s:0' → s:0'
0' :: s:0'
quot :: s:0' → s:0' → s:0'
log :: s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
minus(gen_s:0'2_0(a), gen_s:0'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
quot, log
They will be analysed ascendingly in the following order:
quot < log
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
quot(
gen_s:0'2_0(
n1993_0),
gen_s:0'2_0(
1)) →
gen_s:0'2_0(
n1993_0), rt ∈ Ω(1 + n1993
0)
Induction Base:
quot(gen_s:0'2_0(0), gen_s:0'2_0(1)) →RΩ(1)
0'
Induction Step:
quot(gen_s:0'2_0(+(n1993_0, 1)), gen_s:0'2_0(1)) →RΩ(1)
s(quot(minus(gen_s:0'2_0(n1993_0), gen_s:0'2_0(0)), s(gen_s:0'2_0(0)))) →RΩ(1)
s(quot(gen_s:0'2_0(n1993_0), s(gen_s:0'2_0(0)))) →IH
s(gen_s:0'2_0(c1994_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
pred(
s(
x)) →
xminus(
x,
0') →
xminus(
x,
s(
y)) →
pred(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
s(
0')) →
0'log(
s(
s(
x))) →
s(
log(
s(
quot(
x,
s(
s(
0'))))))
Types:
pred :: s:0' → s:0'
s :: s:0' → s:0'
minus :: s:0' → s:0' → s:0'
0' :: s:0'
quot :: s:0' → s:0' → s:0'
log :: s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
minus(gen_s:0'2_0(a), gen_s:0'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
quot(gen_s:0'2_0(n1993_0), gen_s:0'2_0(1)) → gen_s:0'2_0(n1993_0), rt ∈ Ω(1 + n19930)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
log
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol log.
(16) Obligation:
TRS:
Rules:
pred(
s(
x)) →
xminus(
x,
0') →
xminus(
x,
s(
y)) →
pred(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
s(
0')) →
0'log(
s(
s(
x))) →
s(
log(
s(
quot(
x,
s(
s(
0'))))))
Types:
pred :: s:0' → s:0'
s :: s:0' → s:0'
minus :: s:0' → s:0' → s:0'
0' :: s:0'
quot :: s:0' → s:0' → s:0'
log :: s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
minus(gen_s:0'2_0(a), gen_s:0'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
quot(gen_s:0'2_0(n1993_0), gen_s:0'2_0(1)) → gen_s:0'2_0(n1993_0), rt ∈ Ω(1 + n19930)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_s:0'2_0(a), gen_s:0'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(18) BOUNDS(n^1, INF)
(19) Obligation:
TRS:
Rules:
pred(
s(
x)) →
xminus(
x,
0') →
xminus(
x,
s(
y)) →
pred(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
s(
0')) →
0'log(
s(
s(
x))) →
s(
log(
s(
quot(
x,
s(
s(
0'))))))
Types:
pred :: s:0' → s:0'
s :: s:0' → s:0'
minus :: s:0' → s:0' → s:0'
0' :: s:0'
quot :: s:0' → s:0' → s:0'
log :: s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
minus(gen_s:0'2_0(a), gen_s:0'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
quot(gen_s:0'2_0(n1993_0), gen_s:0'2_0(1)) → gen_s:0'2_0(n1993_0), rt ∈ Ω(1 + n19930)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_s:0'2_0(a), gen_s:0'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
pred(
s(
x)) →
xminus(
x,
0') →
xminus(
x,
s(
y)) →
pred(
minus(
x,
y))
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
s(
0')) →
0'log(
s(
s(
x))) →
s(
log(
s(
quot(
x,
s(
s(
0'))))))
Types:
pred :: s:0' → s:0'
s :: s:0' → s:0'
minus :: s:0' → s:0' → s:0'
0' :: s:0'
quot :: s:0' → s:0' → s:0'
log :: s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
minus(gen_s:0'2_0(a), gen_s:0'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_s:0'2_0(a), gen_s:0'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(24) BOUNDS(n^1, INF)